In Δ ABC, AB=15 cm, ∠ A=30∘, ∠ B=130∘. The area of the triangle will be equal to [Tan 30∘=0.57Tan 50∘=1.2]
122.13 cm2
Draw CD perpendicular to AB extended till D.
∠ CBD=180−130∘=50∘
Tan 50∘=CDBD=hx
h=x tan 50∘
h=1.2x ...(i)
In Δ ACD
Tan 30∘=CDAD=h(15+x)
h=(15+x).Tan 30∘
h=(15+x).0.57
h=8.55+0.57x − from ... (i)
From (i) & (ii) we have
1.2 x=8.55+0.57 x
0.63 x=8.55
x=13.57
h=1.2x − from ...(i)
h=1.2×13.57
h=16.28
Area of triangle ABC =12×AB×h
=12×15×16.28
=122.13 cm2