In Δ ABC, AB=18 cm, ∠A=45∘, ∠B=60∘. Then the area of the triangle ABC is
81√3(√3−1) cm2
In Δ ABC, draw CD perpendicular to AB
Let AD=x, BD=(18−x) and, AD=CD=x
In Δ BDC, angle of B Δ BDC, are 30∘, 60∘, 90∘
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
30∘60∘90∘1:√3:2↓↓↓BDCDBC↓x√3x2x√3
BD=x√3=(18−x)
x(1√3+1)=18
x[(√3+1)√3]=18
x=18.√3(√3+1)
x=18√3(√3+1)×(√3−1)(√3−1)=91/8√3(√3−1)/2=9√3(√3−1)
Area of triangle ABC
=12×AB×CD
=1/2×9/18×9√3[(√3−1)]
=81√3[(√3−1)] cm2