In ΔABC,AB=AC,∠A=40∘,O is a point inside ΔABC such that ∠OBC=∠OCA. Find the measure of ∠BOC.
A
110∘
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
35∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
140∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
155∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A110∘ Given: AB = AC ∴∠ABC=∠ACB ...(i) {Angle opposite equal sides} Also, ∠OBC=∠OCA ...(ii) {given} Subtract (i) from (ii) ∠OBA=∠OCB ...(iii) Let ∠OBC=∠OCA=x and ∠OBA=∠OCB=y ∠ABC=∠ACB=x+y In △ABC, ∠ABC+∠BAC+∠BCA=180∘ {Using Angle Sum Property} 40∘ + (x + y) + (x + y) =180∘ ⇒2(x+y)=140∘ ⇒x+y=70∘ In △OBC, ∠OBC+∠OCB+∠BOC=180∘ ⇒x+y+∠BOC=180∘ ⇒∠BOC=180∘−(x+y) ⇒∠BOC=180∘−70∘=110∘