The correct option is A 110∘
Given: AB=AC
∠ABC=∠ACB ……(i) (Angle opposite equal sides)
Also, ∠OBC=∠OCA
Let ∠OBC=x=∠OCA and ∠OBA=y
Since , From (i)
∠ABC=∠ACB
Therefore, ∠ABC=x+y=∠ACB
In ΔABC, ∠ABC+∠BAC+∠BCA=180∘ (Using angle sum property)
⇒40∘+(x+y)+(x+y)=180∘
⇒2(x+y)=140∘
⇒(x+y)=70∘
In ΔOBC, ∠OBC+∠OCB+∠BOC=180∘
x+y+∠BOC=180∘
∠BOC=180∘−(x+y)
⇒∠BOC=180∘−70∘=110∘