wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC, ADBC and point D lies on BC such that 2DB=3CD. Prove that 5AB2=5AC2+BC2.

Open in App
Solution

Given : ADBC

2DB=3CD

DBCD=32

DB=3x,CD=2x and BC=5x

lnΔADB,BDA=90

AB2=AD2+DB2

AB2=AD2+(3x)2

AB2=AD2+9x2

5AB2=5AD2+45x2

5AD2=5AB245x2 __(i)

and AC2=AD2+CD2

AC2=AD2+4x2

5AC2=5AD2+20x2

5AD2=5AC220x2 __(ii)

comparing (i) and (ii)

5AB245x2=5AC220x2

5AB2=5AC2+25x2

=5AC2+(5x)2

5AB2=5AC2+BC2

1494474_879180_ans_205570f3b2af4da58923a6ab1c2e368d.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon