In ΔABC and ΔDEF, ∠A=∠E=40∘, AB : ED = AC : EF and ∠F=65∘, then the value of ∠B is
75∘
In ΔABC and ΔDEF,
∠A=∠E (Given)
ABED=ACEF (Given)
By SAS Criteria,
ΔABC∼ΔEDF∴∠A=∠E,∠B=∠D,∠C=∠F
Now, In ΔABC,
∠A=40∘ [Given]
∠C=65∘ [∵∠C=∠F=65∘]
∠A+∠B+∠C=180∘ (Sum of the angles in a Δ is 180∘)
On substituting the values we get:
40∘+∠B+65∘=180∘
∠B=180∘−40∘−65∘
∠B=75∘