Question 40
In ΔABC, ∠A=100∘, AD bisects ∠A and AD⊥BC. Then, ∠B is equal to
a) 80∘
b) 20∘
c) 40∘
d) 30∘
Given, ∠BAD=∠DAC=50∘ [∵ AD bisects ∠A and ∠A=100∘]
and ∠BDA=∠ADC=90∘ [∵AD⊥BC]
Now, in ΔABD,
∠ABD+∠BAD+∠BDA=180∘ [angle sum property of a triangle]
⇒∠ABD+50∘+90∘=180∘⇒∠ABD+140∘=180∘⇒∠ABD=180∘−140∘⇒∠ABD=40∘