In ΔABC,∠A=∠B=30∘,AB=12 cm, the area of the triangle will be equal to
12√3 cm2
Draw CD perpendicular to AB
In ΔACD & ΔBCD
∠A=∠B, (Both 30∘)
CD=CD (common)
∠CDA=∠CDB (Each 90∘)
Area, ΔACDD≅BCD
Hence,AD=DC=6cm (corresponding sides of congruent triangles )
In right-angled triangle ACD, the angles are 30∘,60∘,90∘
Hence, the corresponding sides can be calculated as
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
30∘60∘90∘1:√3:√2↓↓↓CDADAC↓↓↓6√3 cm6 cm12√13 cm
Area of triangle ABC=12×AB×CD
=12×12×6√3
=36√3=36√3×√3√3=12√3cm2