wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC, A is obtuse, PBAC and QCAB. Prove that BC2=(AC×CP+AB×BQ).

Open in App
Solution

Given P=Q=90

In ABP

AB2=AP2+BP2(pythagoras theorem)

In BPC

BC2=BP2+PC2(pythagoras theorem)

BC2=AB2AP2+(AP+AC)2

BC2=AB2+AC2+2AP×AC.....(2)

In AQC

AC2=AQ2+QC2(pythagoras theorem)

In BQC

BC2=CQ2+BQ2 (pythagoras theorem)

BC2=AC2AQ2+(AB+AQ)2

BC2=AC2+AB2+2ABAQ......(3)

add (2) and (3)

2BC2=2AC2+2AB2+2AP×AC+2AB×AQ

2BC2=2AC(AC+AP)+AB(AB+AQ)

2BC2=2(AC×PC)+2(AB×BQ)

BC2=AC×CP+AB×BQ

Hence proved

1349922_1219830_ans_0fb8d4800eb543829f6600f4edaa87ac.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Classification of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon