In ΔABC, ∠ACB=90∘, AB = C units, BC = a units, AC = b units, CD is perpendicular to AB and CD = p units. Then 1p2=
Equilateral
∠ACB=90∘
AB2=AC2+BC2
⇒c2=b2+a2 ....... (1)
Area (ΔABC)=12×AB×CD
=12×BC×AC
=12×c×p=12×a×b
⇒C=abp
Put this in (1), we get
a2b2p2=b2+a2
⇒1p2=b2+a2a2b2
⇒1p2=b2a2b2+a2a2b2
⇒1p2=1a2+1b2