Given in △ABC,∠A is obtuse and AD⊥CB and BE⊥CA
Consider △ADCand△CEB
∠D=∠E=90∘
∠DCA=∠ECB [Vertically opposite angles]
⇒△ADC∼△CEB [AAA similarity criterion]
Consider, right angled triangle ABE
⇒AB2=BE2+AE2 [By Pythagoras theorem]
⇒AB2=BE2+(CA+CE)2 [Since AE = AC + CE]
⇒AB2=[BE2+CE2]+AC2+2AC×CE (2)
In right △BCE,BE2+CE2=BC2 [By Pythagoras theorem]
Hence equation (2) becomes,
⇒AB2=BC2+AC2+CA×CE+CA×CE
⇒AB2=BC2+AC2+CA×CE+CD×CB [From (1)]
⇒AB2=BC2+CD×CB+AC2+AC×CE
⇒AB2=BC(BC+CD)+AC(AC+CE)
⇒AB2=BC×BD+AC×AE [From the figure]