In ΔABC,∠C=90∘,cotA=√3andcotB=1√3, then prove : that sinAcosB+cosA,sinB=1
Open in App
Solution
Here we are given that cotA=√31=bp Here , b=√3k,p=1k ∴ By using Baudhayana theorem AB2=AC2+BC2 =(√3k)2+(k)2=3k2+k2 =4k2 ∴AB=2k ∴sinA=BCAB=1k2k=12 cosA=ACAB=√3k2k=√32 Similarly, by using cotB=1√3=BCAC ⇒BC=1,AC=√3k ∴AB2=BC2+AC2 =(1k)2+(√3k)2 =1k2+3k2=4k2 ⇒AB=2k cosB=BCAB=1k2k=12 sinB=ACAB=√3k2k=√32 ∴ L.H.S =sinA.cosB+cosA.sinB =12⋅12+√32⋅√32=14+34 =1 = R.H.S Hence Proved.