wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC,C=90,cotA=3andcotB=13, then prove : that sinAcosB+cosA,sinB=1

Open in App
Solution

Here we are given that
cotA=31=bp
Here , b=3k,p=1k
By using Baudhayana theorem
AB2=AC2+BC2
=(3k)2+(k)2=3k2+k2
=4k2
AB=2k
sinA=BCAB=1k2k=12
cosA=ACAB=3k2k=32
Similarly, by using cot B=13=BCAC
BC=1,AC=3k
AB2=BC2+AC2
=(1k)2+(3k)2
=1k2+3k2=4k2
AB=2k
cosB=BCAB=1k2k=12
sinB=ACAB=3k2k=32
L.H.S =sinA.cosB+cosA.sinB
=1212+3232=14+34
=1 = R.H.S
Hence Proved.
1869954_1517963_ans_d949da606153424aa7e7051b078dde50.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon