wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC,D is the midpoint of BC and AEBC. If AC>AB, show that AB2=AD2BC.DE+14BC2.

Open in App
Solution

Given: ΔABC,D is the midpoint of BC and AEBC and AC>AB

Then, BD = CD and AED=90o

Then,ADE<90o and ADC>90o

https://lh6.googleusercontent.com/QgAJsONxQApoGJitex9IinpyFJJgRhaZb93HHKmMtSoTb2AeF5Qf243Q_M31f5_AH-iDudOLIV-SES2qbCJKm111ihLuGxyWwhnAAWMcweKiIU_kIdSBtEa67vghpXvLrz0fQ3DFmnQtyMrd9Q

In ΔAED,

AED=90o

Therefore,
AD2=AE2+DE2

AE2=(AD2DE2) ——- (1)

In ΔAEB,

AEB=90o

Therefore,
AB2=AE2+BE2——- (2)

Putting the value of AE2 from (1) in (2), we get

Therefore,
AB2=(AD2DE2)+BE2

=(AD2DE2)+(BD2DE2) [But BD=12BC]

=AD2DE2+(12BCDE)2

=AD2DE2+14BC2+DE2BC.DE

AB2=AD2BC.DE+14BC2


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythogoras Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon