In ΔABC,D is the midpoint of BC and AE⊥BC. If AC>AB, show that AB2=AD2−BC.DE+14BC2.
Given: ΔABC,D is the midpoint of BC and AE⊥BC and AC>AB
Then, BD = CD and ∠AED=90o
Then,∠ADE<90o and ∠ADC>90o
In ΔAED,
∠AED=90o
Therefore,
AD2=AE2+DE2
⇒AE2=(AD2−DE2) ——- (1)
In ΔAEB,
∠AEB=90o
Therefore,
AB2=AE2+BE2——- (2)
Putting the value of AE2 from (1) in (2), we get
Therefore,
AB2=(AD2−DE2)+BE2
=(AD2−DE2)+(BD2−DE2) [But BD=12BC]
=AD2−DE2+(12BC−DE)2
=AD2−DE2+14BC2+DE2−BC.DE
AB2=AD2−BC.DE+14BC2