wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC,a2+b2a2b2=sin(A+B)sin(AB), prove that the triangle is isosceles or right triangle.

Open in App
Solution

Consider the given equation,

a2+b2a2b2=sin(A+B)sin(AB)

Apply the componendo and devidendo rule .

a2+b2+a2b2(a2+b2)(a2b2)=sin(A+B)+sin(AB)sin(A+B)sin(AB)

2a22b2=sin(A+B)+sin(AB)sin(A+B)sin(AB)

a2b2=sin(A+B)+sin(AB)sin(A+B)sin(AB)

sinc+sind=2sinc+d2coscd2,sincsind=2cosc+d2sincd2

a2b2=2sinAcosB2cosAsinB

By sin rule, a=RsinA,b=RsinB

(RsinA)2(RsinB)2=2sinAcosB2cosAsinB

sinAsinB=cosBcosA

sinAcosA=sinBcosB

2sinAcosA=2sinBcosB

sin2Asin2B=0

2cos(2A+2B2)sin(2A2B2)=0

2cos(A+B)sin(AB)=0

cos(A+B)sin(AB)=0

If cos(A+B)=0

sin(A+B)=cos900

A+B=900

Hence, triangle is right angle triangle.

If, sinAB=0

sinAB=sin0

AB=0

A=B

So, the triangle is isosceles.

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon