Consider the given equation,
a2+b2a2−b2=sin(A+B)sin(A−B)
Apply the componendo and devidendo rule .
a2+b2+a2−b2(a2+b2)−(a2−b2)=sin(A+B)+sin(A−B)sin(A+B)−sin(A−B)
2a22b2=sin(A+B)+sin(A−B)sin(A+B)−sin(A−B)
a2b2=sin(A+B)+sin(A−B)sin(A+B)−sin(A−B)
∵sinc+sind=2sinc+d2cosc−d2,sinc−sind=2cosc+d2sinc−d2
∴a2b2=2sinAcosB2cosAsinB
By sin rule, a=RsinA,b=RsinB
(RsinA)2(RsinB)2=2sinAcosB2cosAsinB
sinAsinB=cosBcosA
sinAcosA=sinBcosB
2sinAcosA=2sinBcosB
sin2A−sin2B=0
2cos(2A+2B2)sin(2A−2B2)=0
2cos(A+B)sin(A−B)=0
cos(A+B)sin(A−B)=0
If cos(A+B)=0
sin(A+B)=cos900
A+B=900
Hence, triangle is right angle triangle.
If, sinA−B=0
sinA−B=sin0
A−B=0
A=B
So, the triangle is isosceles.
Hence, proved.