In ΔABC,ab=2+√3 and ∠C=600. Then the ordered pair (∠A,∠B) is equal to
A
(150,1050)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(1050,150)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(450,750)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(750,450)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(1050,150) In ΔABC ∠A+∠B+∠C=1800 ∠A+∠B+600=1800 ∠A+∠B=1200⋯(i)
By sine formula: asinA=bsinB sinAsinB=ab sinAsinB=2+√3
Applying componendo and dividendo, we get sinA+sinBsinA−sinB=3+√3√3+1 2sin(A+B2)cos(A−B2)2sin(A−B2)cos(A+B2)=3+√3√3+1×√3−1√3−1 √3cot(A−B2)=√3 A−B=900⋯(ii)
Solving equation (i),(ii) A=1050,B=150