∑a2sin(B−C)sinB+sinC
Using a=2RsinA,b=2RsinB and c=2RsinC
=∑4R2sin2Asin(B−C)sinB+sinC
We know that A+B+C=π⇒A=π−(B+C)
=∑4R2sinAsin(π−(B+C))sin(B−C)sinB+sinC
=∑4R2sinAsin(B+C)sin(B−C)sinB+sinC
Using sin(x+y)sin(x−y)=sin2x−sin2y
=∑4R2sinA(sin2B−sin2C)sinB+sinC
=∑4R2sinA(sinB+sinC)(sinB−sinC)sinB+sinC
=∑4R2sinA(sinB−sinC)
=4R2sinA(sinB−sinC)+4R2sinB(sinC−sinA)+4R2sinC(sinA−sinB)
=4R2[sinAsinB−sinAsinC+sinBsinC−sinBsinA+sinCsinA−sinCsinB]
=4R2×0=0