wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC, if 2b=a+c show that 3 tan (A2)tan(C2)=1.

Open in App
Solution

In ΔABC
2b=a+c [asinA=bsinB=csinC=2R]
2×(2RsinB)=2R(sinA+sinC)
2sinB=sinA+sinC [sinα+sinβ=2sinα+β2cosαβ2]
2×2sinB2cosB2=2sinA+C2cosAC2
2sinB2cosB2=sin(πβ2)cosAC2
2sinπ(A+C)2cosB2=cosB2cosAC2
2cosA+C2=cosAC2
21=cosAC2cosA+C2
Now applying component dividend
2+121=cosAC2+cosA+C2cosAC2cosA+C2 [ab=cd,thena+bab=c+dcd]
31=2cos(A2)cos(C2)2sinA2sinC2 [cosα+cosβ=2cosα+β2cosαβ2]
3=1tanA2tanC2 [cosαcosβ=2sinα+θ2sinβα2]
3tanA2tanC2=1.


1179242_1245000_ans_361eab2838284b4eb3c54ccacfd5eaed.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon