No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
secθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dtanθ Given: a=(b−c)secθ ⇒ab−c=secθ
Now using tan2θ=sec2θ−1, we have: tan2θ=a2(b−c)2−1=a2−(b−c)2(b−c)2=(a+b−c)(a−b+c)(b−c)2 [∵2s=a+b+c]⇒tan2θ=(2s−2c)(2s−2b)(b−c)2 =4(s−b)(s−c)(b−c)2=4bc(b−c)2⋅(s−b)(s−c)bc[∵sin2A2=(s−b)(s−c)bc]
⇒tan2θ=4bc(b−c)2sin2A2
Taking square root of both sides, ⇒2√bc|b−c|sinA2=tanθ