In ΔABC, if ∠A+∠B=125∘ and ∠A+∠C=113∘, find ∠A,∠B and ∠C.
Given ∠A+∠B=125∘ and∠A+∠C=113∘
Adding both the equations, we get
⇒∠A+∠B+∠A+∠C=125∘+113∘⇒∠A+∠B+∠C+∠A=238∘....(i)
Since, In a triangle ∠A+∠B+∠C=180∘.....(ii)
Substitute equation(ii) in equation(i), we get
⇒180∘+∠A=238∘
⇒∠A=238∘−180∘
⇒∠A=58∘∴∠C=113∘−∠A=113∘−58∘=55∘∴∠B=125∘−∠A=125∘−58∘=67∘
Hence, ∠A=58∘∠B=67∘∠C=55∘