Question 124
In ΔABC, if ∠A=∠C and exterior ∠ABX=140∘, then find the angles of the triangle.
Given, ∠A=∠C and exterior ∠ABX=140∘
Let ∠A=∠C=x
According to the exterior angle property,
Exterior ∠B= Interior ∠A + Interior ∠C
⇒140∘=x+x⇒140∘=2x⇒x=140∘2=70∘
So, ∠A=∠C=70∘
Now, ∠A+∠B+∠C=180∘ [angle sum property of a triangle]
⇒70∘+∠B+70∘=180∘⇒∠B+140∘=180∘⇒∠B=180∘−140∘⇒∠B=40∘
Hence, all the angles of the triangle are 70∘,40∘ and 70∘