In ΔABC,if ∠C=90∘,∠A=30∘,c=20, then the values of a and b are
10,10
10,10√3
5,5√3
8,8√3
∠c=90∘,]∠A=30∘,c=20,then a=c sin Asin C=10 and b=c sin Bsin C=10√3. Trick : Since the angles are 30∘,60∘,90∘ therefore sides must be 1:√3:2. Hence, a=10,b=10√3.
If 2∠A=3∠B=6∠C in a ΔABC, then ∠A, ∠B, ∠C are
In a △ABC if 2∠A = 3∠B = 6∠C, then ∠A, ∠B, ∠C are
Let a, b and c be positive constants. The value of ‘a’ in terms of ‘c’ if the value of integral ∫10(acxb+1+a3bx3b+5) dx is independent of ‘b’ equals