In ΔABC, if C=90∘, then a2+b2a2−b2 sin(A−B)=
Given that, In ΔABC,∠C=900
A+B+C=1800
A+B=1800−900
A+B=900........(1)
Then,
a2+b2a2−b2sin(A−B)
Using sine rule, and we get,
asinA=bsinB=csinC=k
(ksinA)2+(ksinB)2(ksinA)2−(ksinB)2sin(A−B)
=sin2A+sin2Bsin2A−sin2Bsin(A−B)
=1−cos2A2+1−cos2B21−cos2A2−1−cos2B2sin(A−B)∴cos2θ=1−2sin2θ
=1−cos2A+1−cos2B1−cos2A−1+cos2Bsin(A−B)
=2−cos2A−cos2Bcos2B−cos2Asin(A−B)
=2−(cos2A+cos2B)cos2B−cos2Asin(A−B)
=2−(2cos(2A+2B)2cos(2A−2B)2)2sin(2B+2A)2sin(2A−2B)2sin(A−B)
=2−(2cos(A+B)cos(A−B))2sin(A+B)sin(A−B)sin(A−B)
=2−(2cos(A+B)cos(A−B))2sin(A+B)sin(A−B)sin(A−B)
=2−(2cos(A+B)cos(A−B))2sin(A+B)
Now, by equation (1) and we get,
=2−(2cos900cos(A−B))2sin900
=2−02
=1
Hence, this is the answer.