In ΔABC, if AB1=AC2=BC√3, then m ∠C=.......
From the law of cosines,
AB2=BC2+AC2−2(BC)(AC)cosC
Given that AC=2AB and BC=√3AB
Substituting in the cosine equation,
AB2=3AB2+4AB2−2(√3AB)(2AB)cosC
which implies
6AB2=4√3AB2cosC
cosC=64√3
cosC=√32
therefore ∠C=300 (since, cos300=√32)