In Δ ABC, if 1b+c+1c+a=3a+b+c, then C is equal to
90°
60°
45°
30°
Given that,
1b+c+1c+a=3a+b+c⇒ab+c+bc+a=1⇒a(c+a)+b(b+c)=(b+c)(c+a)⇒a2+b2−c2=ab∴cosC=a2+b2−c22abab2ab12⇒C=600
If 2∠A=3∠B=6∠C in a ΔABC, then ∠A, ∠B, ∠C are
In a △ABC if 2∠A = 3∠B = 6∠C, then ∠A, ∠B, ∠C are