wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In Δ ABC, if O is the centroid of ΔABC and ar(ΔOAB)=36cm2, then ar(ΔABC) is

A

112 cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

96 cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

84 cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

108 cm2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D
108 cm2


Let AF, BG and EC be the medians of ΔABC. Given that O is the centroid of ΔABC.

Let AMBC.

Here, BF=FC,AE=EB and AG=GC.Now, Ar(ΔABF)=12×Base× Altitude of Δ ABF=12×BF×AM=12×FC×AM=12×FC×Altitude of Δ AFC=Ar(Δ AFC)

Thus, median divides a triangle into two equal halves.

Similarly, Ar(ΔBOE)=Ar(ΔAOE)(i)Ar(ΔAOG)=Ar(ΔOGC)(ii)and Ar(ΔBOF)=Ar(ΔOFC)(iii)Now, Ar(ΔABF)=Ar(ΔAFC)Ar(ΔAEO)+Ar(ΔEOB)+Ar(ΔOBF)=Ar(ΔAOG)+Ar(ΔGOC)+Ar(ΔOFC)2Ar(ΔAEO)=2Ar(ΔAOG)[From (i), (ii) and (iii)]Ar(ΔAEO)=Ar(ΔAOG)(iv)Also, Ar(ΔABG)=Ar(ΔBGC)Ar(ΔAOG)+Ar(ΔAOE)+Ar(ΔBEO)=Ar(ΔGOC)+Ar(ΔOFC)+Ar(ΔBOF)2Ar(ΔBEO)=2Ar(δBOF)Ar(ΔBEO)=Ar(ΔBOF)..(v)From (i), (ii), (iii), (iv) and (v), we get Ar(ΔBOE)=Ar(ΔAOE)=Ar(ΔAOG)=Ar(ΔOGC)=Ar(ΔBOF)=Ar(ΔOFC)Thus, ar(ΔABC)=3×Ar(ΔOAB)=3×36=108 cm2

Hence, the correct answer is option (d).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Questions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon