Thus, median divides a triangle into two equal halves.
Similarly, Ar(ΔBOE)=Ar(ΔAOE)…(i)Ar(ΔAOG)=Ar(ΔOGC)…(ii)andAr(ΔBOF)=Ar(ΔOFC)…(iii)Now,Ar(ΔABF)=Ar(ΔAFC)⇒Ar(ΔAEO)+Ar(ΔEOB)+Ar(ΔOBF)=Ar(ΔAOG)+Ar(ΔGOC)+Ar(ΔOFC)⇒2Ar(ΔAEO)=2Ar(ΔAOG)[From (i), (ii) and (iii)]⇒Ar(ΔAEO)=Ar(ΔAOG)…(iv)Also,Ar(ΔABG)=Ar(ΔBGC)⇒Ar(ΔAOG)+Ar(ΔAOE)+Ar(ΔBEO)=Ar(ΔGOC)+Ar(ΔOFC)+Ar(ΔBOF)⇒2Ar(ΔBEO)=2Ar(δBOF)⇒Ar(ΔBEO)=Ar(ΔBOF)..(v)From (i), (ii), (iii), (iv) and (v), we get Ar(ΔBOE)=Ar(ΔAOE)=Ar(ΔAOG)=Ar(ΔOGC)=Ar(ΔBOF)=Ar(ΔOFC)Thus,ar(ΔABC)=3×Ar(ΔOAB)=3×36=108cm2