In ΔABC, if sin2A2,sin2B2,sin2C2 are in H.P., then a,b,c are in
A
H.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
G.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AH.P. sin2A2,sin2B2,sin2C2 are in H.P. ⇒1sin2A2,1sin2B2,1sin2C2 are in A.P. ⇒1sin2C2−1sin2B2=1sin2B2−1sin2A2 ⇒ab(s−a)(s−b)−ac(s−a)(s−c)=ac(s−a)(s−c)−bc(s−b)(s−c) ⇒as−a(b(s−c)−c(s−b)(s−b)(s−c))=cs−c(a(s−b)−b(s−a)(s−a)(s−b)) ⇒ab−ac=ac−bc ⇒ab+bc=2ac⇒1c+1a=2b
Hence, a,b,c are in H.P.