In ΔABC, prove that
(b−c)b+c=tan12(B−C)tan12(B+C)
By the sine rule, we have
asin A=bsin B=csin C=k(say).
⇒a=k sin A,b=k sin B, and c=k sin C,
∴LHS=b−cb+c=k sin B−k sin Ck sin B+k sin C=k(sin B−sin C)k(sin B+sin C)
= (sin B−sin C)(sin B+sin C)=2cos(B+C)2sinB−C22sinB+C2cos(B−C)2
= tan12(B−C)tan12(B+C)= RHS.
Hence, (b−c)b+c=tan12(B−C)tan12(B+C)