In ΔABC, AB is produced to D so that BD=BC. if ∠B=60∘ and ∠A=70∘, prove that: (i) AD>CD (ii) AD>AC
Given : In ΔABC, side BC is produced to D such that BD=BC
∠A=70∘ and ∠B=60∘
To prove :
(i) AD>CD (ii) AD>AC
Proof : In ΔABC,
∠A=70∘, ∠B=60∘
But Ext, ∠CBD+∠CBA=180∘
(Linear pair)
∠CBD+60∘=180∘
⇒ ∠CBD=180∘−60∘=120∘
But in ΔBCD,
BD = BC
∴∠D=∠BCD
But ∠D+∠BCD=180∘−120∘=60∘
∴∠D=∠BCD=60∘2=30∘
and in ΔABC,
∠A+∠B+∠C=180∘
⇒ 70∘+60∘+∠=180∘
⇒ 130∘+∠C=180∘
∴ ∠C=180∘−130∘=50∘
Now ∠ACD=∠ACB+∠BCD
=50∘+30∘=80∘
(i) Now in ΔACB,
∠ACD=80∘ and ∠A=70∘
∴ Side AD>CD
(Greater angle has greatest side opposite to it)
(ii) ∵ ∠ACD=80∘ and ∠D=30∘
∴ AD>AC