In ΔABC, side AB is produced to D such that BD = BC. If ∠A=70∘ and ∠B=60∘, prove that (i) AD > CD (ii) AD > AC.
Solution
n △CBA CBD is an exterior angle.
i.e., ∠CBA+∠CBD=1800
⇒600+∠CBD=1800⇒∠CBD=1200
△BCDisisoscelesandBC=BD
Let∠BCD=∠BDC=x0
In \(\triangle CBD, we have:⇒\angle BCD+\angle CBD+\angle CDB=180°⇒x+120°+x=180⇒2x=60°⇒x=30°∴\angle BCD=\angle BDC=30°
In \(\triangle ADC, \angle C=\angle ACB + \angle BCD = 50°+30°=80°
\angle A=70°and \angle D=30°∴\angle C>\angle A⇒AD>CD
...(1)
Also, \angle C>\angle D⇒AD>AC ...(2)