wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC, the bisector of A intersects the base BC at the point D. Prove that AB×AC=BD×DC+AD2.

Open in App
Solution

Given:InABC,,thebisectorofAintersectsthebaseBCatthepointDToProve:AB×AC=AD2+BD×BCProof:DrawacircumcircleofABC.ProduceADtomeetthecircleatE.JoinEC.InABDandAEC,BAD=EAC[ADisthebisectorofBAC]ABD=AEC[Anglesinthesamesegmentareequal]ABDAEC.(ByAAsimilarity)ADAC=ABAEAB×AC=AD×AE=AD×(AD+DE)=AD2+AD×DE=AD2+BD×DC[AD×DE=BD×DC]AB×AC=AD2+BD×DCHenceProved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Criteria for Similarity of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon