In ΔABC, the median AD divides ∠BAC such that ∠BAD:∠CAD=2:1. then cosA3 is equal to
sinB2sinC
A3=∠CAD=θNow,(1+1)cotα=1.cos2θ−1.cotθ⇒2cot(B+2θ)=cot2θ−cotθ⇒cot(B+2θ)+cotθ=cot2θ−cot(B+2θ)sin(B+3θ)sin(B+2θ).sinθ=sinBsin(B+2θ).sin2θ⇒sin(B+A)sinθ=sinBsin2θ⇒sinC=sinB2cosθ⇒cosA3=sinB2sinC