In ΔABC, the median AD divides ∠BAC such that ∠BAD:∠CAD=2:1. Then cos(A3) is equal to
A
sinB2sinC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sinC2sinB
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2sinBsinC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sinBsinC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AsinB2sinC Let, ∠CDA=α.
Now by m−n theorem (a2+a2)cotα=a2⋅cot2A3−a2⋅cotA3 ⇒2cot(B+2A3)=cot2A3−cotA3 ⇒cot(B+2A3)+cotA3=cot2A3−cot(B+2A3) ⇒cos(B+2A3)×sinA3+sin(B+2A3)×cosA3sin(B+2A3)×sinA3=sin(B+2A3)×cos2A3−cos(B+2A3)×sin2A3sin(B+2A3)×sin2A3 ⇒sin(B+3A3)sinA3=sin(B)sin2A3 ⇒sin(B+A)=sin(B)2sinA3cosA3×sinA3 ⇒sin(π−C)=sin(B)2cosA3 ⇒cos(A3)=sinB2sinC