In ΔABC the sides opposite to angles A,B,C are denoted by a,b,c respectively. let r1,r2 andr3 be the ex-radii of the triangle.
The value of r1bc+r2ca+r3ab is equal to?
A
12R−1r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2R−r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
r−2R
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1r−12R
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is A1r−12R r1bc+r2ca+r3ab=a=2RsinA,r1=stan(A2),c=2RsinC,r2=stan(C2)b=2RsinB,r2=stan(B2)ar1+br2cr3(abc)=(2Rs)(abc)[sinAtan(A2)+sinBtan(B2)+sinCtan(C2)]=2Rs(abc)2[sin2(A2)+sin2B2+sin2(C2)]=2Rs(abc)[2sin2(A2)sin2(B2)sin2(C2)]=2Rs(abc)(1−cosA)+(1−cosB)+(1−cosC)=2Rs(abc)[3−(cosA+cosB+cosC)]=2sabc[3R−R(cosA+cosB+cosC)]=2sabc[3R−R(1+4sin(A2)sin(B2)sin(C2))]=2sabc[2R−4Rsin(A2)+sin(B2)sinC2]=2sabc(2R−r)=s[4Rabc−2rabc]=s[1△−2r4r△]=s△[1−r2R]=1r[1−r2R]=1r−12R