In Δ ABC the sides opposite to angles A,B,C are denoted by a,b,c respectively, then, cos2Aa2−cos2Bb2=?
cos2Aa2−cos2BB2=(2cos2A−1a2)−(2cos2B−1b2)=2(cos2Aa2−cos2Bb2)+(1b2−1a2)=2⎧⎨⎩(b2+c2−a22bc)21a2−(a2+c2−b22ac)21b2⎫⎬⎭+(1b2−1a2)=12⎛⎜ ⎜⎝(b2+c2−a2)2−(a2+c2−b2)2a2b2c2⎞⎟ ⎟⎠+(1b2−1a2)=2b2c2−2a2c2a2b2c2+(1b2−1a2)=b2−a2a2b2+(1b2−1a2)=b2−a2a2b2=1a2−1b2
So option A is correct.