In ΔABC the sides opposite to angles A,B,C are denoted by a,b,c respectively.
If a2,b2,c2 are in A.P., then which of the following is correct?
A
tan2Btan(A+C)=1−tanA.tanC1−tan2B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan(A+C)2tanB=1−tan2B1−tanA.tanC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanB.tan(A+C)=2tanA.tanC1−tanA.tanC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
tanB.tan(A+C)=tanA.tanC1+2tanA.tanC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CtanB.tan(A+C)=2tanA.tanC1−tanA.tanC a2,b2,c2 are in A.P. ⇒b2−a2=c2−b2 ⇒ sin2B−sin2A=sin2C−sin2B orsin(B+A)sin(B−A)=sin(C+B)sin(C−B) or sinC(sinBcosA−cosBsinA)=sinA(sinCcosB−cosCsinB) Dividing both sides by sinAsinBsinC, we get cotA−cotB=cotB−cotC ⇒cotA,cotB,cotCare in A.P.⇒tanA,tanB,tanC are in H.P Hence, 2tanB=1tanA+1tanC ⇒2tanB=tanA+tanCtanA.tanC=tan(A+C)×(1−tanAtanC)tanA.tanC ∴tanB.tan(A+C)=2tanA.tanC1−tanA.tanC