In Δ ABC the sides opposite to angles A,B,C are denoted by a,b,c respectively, and a2+c2=2002b2, then cotA+cotCcotB is equal to?
cotA+cotCcotB=bccosA2Δ+abcosC2ΔaccosB2Δ=b(ccosA+acosC)accosB=2b(b)a2+c2−b2=2a2+c2b2−1..........(i)
Given a2+c2b2=2002
Substituting in (i)
=22002−1=22001