The correct option is B H.P.
Let sinAa=sinBb=sinCc=k
Gives sinA=ak,sinB=bk,sinC=ck ...(1)
Now as a2,b2,c2 is in A.P
2b2=a2+c2⇒b2=a2+c2−b2b22ac=a2+c2−b22ac⇒b2ac=a2+c2−b22abc⇒acosC+ccosA2ac=cosBb⇒2cosBb=cosCc+cosAa
Dividing both sides by k
2cosBbk=cosCck+cosAak
Substituting value from (1)
2cosBsinB=cosCsinC+cosAsinA⇒2cotB=cotC+cotA
⇒cotA,cotB,cotC is in A.P
Therefore, tanA,tanB,tanC is in H.P