The correct option is
A 16R2−a2−b2−c2(r1+r2+r3)2=r21+r22+r23−2r(r1+r2+r3)+2(r1r2+r2r3+r3r1)
We know that r1+r2+r3=4R+r
Put this in above eqnation,
(4R)2=r21+r22+r23−2r(r1+r2+r3)+2s2 ------ r1r2+r2r3+r3r1=s2
r21+r22+r23=16R2+2r(r1+r2+r3)−2s2 ------1
we know r=Δs and r1=Δs−a similarly for r2 and r3
Hence, rr1+rr2+rr3=[s2s(s−a)+s2s(s−b)+s2s(s−c)]
On solving above equation, we will get
rr1+rr2+rr3=(ab+bc+ca)−s2 ------eqn(2)
Put eqn(2) in eqn(1) we will get, r21+r22+r23=16R2+2(ab+bc+ca)−2s2−2s2
r21+r22+r23=16R2+2(ab+bc+ca)−4s2 -----s=(a+b+c)2
On solving above eqnation, we will get
r21+r22+r23=16R2−a2−b2−c2