In ΔABC, with angles A,B andC,cos(B+2C+3A2)+cos(A−B2)=
If A,B,C are the interior angles of a Δ ABC, show that:
(i) sin B+C2=cosA2
(ii) cos B+C2=sinA2
Prove that 1−cosA+cosB−cos(A+B)1+cosA−cosB−cos(A+B)=tanA2cot(B2).