In ΔPQR, base QR is divided at X such that QX=12XR. Prove that ar(ΔPQX)=13ar(ΔPQR)
Open in App
Solution
QX=12XR LetQX=x XR=2X QR=QX+XR=X+2X=3X Let 'h' be the height of the traingles between the two lines. AreaofΔPQXAreaofΔPQR=12×QX×h12×QR×h=x3x=13 AreaofΔPQX=13AreaofΔPQR