An=cosnθ+sinnθA6=cos6θ+sin6θ=1−3sin2θcos2θ=1−34sin22θA4=cos4θ+sin4θ=1−2sin2θcos2θ=1−12sin22θ2A6−3A4+5=2−32sin22θ−3+32sin22θ+5=4
If Sn=cosnθ+sinnθ, then the value of 3S4−2S6 is given by