The correct option is C 1:3
Given: △PQR, PQ=PR, A and B are points such that, QR=RA=AB=BP
Now, In △PAB
AB=PB
Thus, ∠P=∠PAB=P (isosceles triangle property)
and ∠ABR=∠P+∠PAB
∠ABR=2P (Exterior angle property)
Now, In △ABR
AB=RA
∠ABR=∠ARB=2P (Isosceles triangle property)
Sum of angles of the triangle = 180
∠ABR+∠ARB+∠BAR=180
2P+2P+∠BAR=180
∠BAR=180−4P
Sum of angles on a straight line = 180
∠PAB+∠BAR+∠RAB=180
P+180−4P+∠RAB=180
∠RAB=3P
In △QRA
QR=RA
∠Q=∠QAR=3P (Isosceles triangle property)
But , PQ=PR
∠Q=∠R=3P
hence, ∠P:∠R=1:3