In each case, find whether the trinomial is a perfect square or not :
(i) x2+14x+49 (ii) a2−10a+25
(iii) 4x2+4x+1 (iv) 9b2+12b+16
(v) 16x2−16xy+y2 (vi) x2−4x+16
(i) x2+14x+49=(x)2+2×x×7+(7)2=(x+7)2[∵ a2+2ab+b2=(a+b)2]∴ The given trinomial x2+14x+49 is a perfect square.(ii) a2−10a+25=(a)2−2×a×5+(5)2=(a−5)2[∵ a2−2ab+b2=(a−b)2]∴ The given trinomial a2−10a+25 is a perfect square.(iii) 4x2+4x+1=(2x)2+2×2x×1+(1)2=(2x+1)2[∵ a2+2ab+b2=(a+b)2]∴ The given trinomial 4x2+4x=1 is a perfect square.(iv) 9b2+12b+16=(3b)2+3b×4+(4)2=x2+xy+y2[Taking 3b=x, and 4=y]∴ The given trinomial cannot be expressed asx2+2xy+y2. Hence, it is not a perfect square.(v) 16x2−16xy+y2=(4x)2−4×4x×y+(y)2=a2−4ab+b2[Taking 4x=a, and y=b]∴ The given trinomial cannot be expressed as a2−2ab+b2.∴ It is not a perfect square.(vi) x2−4x+16=(x)2−x×4+(4)2=a−ab+b2[Taking x=a, and 4=b]∴ The given trinomial cannot be expressed asa2−2ab+b2.Hence, it is not a perfect square.