In each of α β and γ is a positive acute angle such that
sin(α+β−γ)=12,cos(β+γ−α)=12andtan(γ+α−β)=1
Find the values of α, β, & γ.
We have ,
sin(α+β−γ)=12,cos(β+γ−α)=12andtan(γ+α−β)=1
Lets take, sin(α+β−γ)=12
⇒sin(α+β−γ)=sin30∘
⇒α+β−γ=30∘---(1)
Lets take, cos(β+γ−α)=12
cos(β+γ−α)=cos60∘
⇒β+γ−α=60∘---(2)
Lets take, tan(γ+α−β)=1
tan(γ+α−β)=tan45∘
⇒ γ+α−β=45∘ ----(3)
Now, lets add (1) and (2)
α+β−γ+β+γ−α=30∘+60∘
⇒2β=90∘
⇒β=90∘2
⇒β=45∘ ---(4)
Lets add (2) and (3)
β+γ−α+γ+α−β=60∘+45∘
⇒2γ=105∘
⇒γ=105∘2
⇒γ=5212∘ --(5)
Now, substitute β=45∘,γ=5212∘ in α+β−γ=30∘
⇒α+β−γ=30∘
⇒α+45∘−5212∘=30∘
⇒α−712∘=30∘
⇒α=30∘+712∘
⇒α=3712∘