In each of the figures given below, AB || CD. Find the value of x in each case.
Draw EF∥AB∥CD
Now, AB∥EFandBEisthetransversal.
Then,
∠ABE=∠BEFAlternateInteriorAngles⇒∠BEF=350
Again, EF∥CDandDEisthetransversal.
Then,
\angleDEF=\angleFED⇒\angleFED=65°
∴x0=∠BEF+∠FED=350+650
=1000orx=1000
(ii)
Draw EO∥AB∥CD
Then, ( \angleEOB+\angleEOD=x ^0 \)
Now, EO∥ABandBOisthetransversal.
∴∠EOB+∠ABO=1800ConsecutiveInteriorAngles
→∠EOB+550=1800
→∠EOB=1250
Again,EO∥CDandDOisthetransversal
∴∠EOD+∠CDO=1800ConsecutiveInteriorAngles
(\rightarrow \angle EOD+25^0=180^0\)
( \rightarrow \angleEOD=1556^0 \)
∴x0=∠EOB+∠EOD=1250+1550=2800
or, x=2800
(iii)Draw EF∥AB∥CD
Then, ∠AEF+∠CEF=x0
Now, EF∥ABandAEisthetransversal
∴∠AEF+∠BAE=1800ConsecutiveInteriorAngles
(\rightarrow \angle AEF+116^0 =180^0\)
→∠AEF=640
Again,EF∥CDandCEisthetransversal
∠CEF+∠ECD=1800.ConsecutiveInteriorAngles
→∠CEF+1240=1800
∴∠CEF=56°
∴,x0=∠AEF+∠CEF=640+56°0=120°or,x=1200