(1)√3−1√3+1×√3−1√3−1 {Rationalizing}
=(√3−1)2(√3)2−(1)2
=4−2√32
=2−√3
2−√3=a−b√3
a=2,b=1
(2)4+√22+√2×2−√22−√2 {Rationalizing}
=8−4√2+2√2−2(2)2−(√2)2
=6−2√22
=3−√2=a−√b
a=3,b=2
In each of the following determine rational numbers a and b :
(i) √3−1√3+1=a−b√3
(ii) 4+√22+√2=a−√b
(iii) 3+√23−√2=a+b√2
(iv) 5+3√37+4√3=a+b√3
(v) √11−√7√11+√7=a−b√77
(vi) 4+3√54−3√5=a+b√5