In each of the following find the equation of the hyperbola satisfying the given conditions.:
(i)vertices(±2,0),foci(±3,0)
(ii)vertices(0,±,5),foci(0,±,8)
(iii)vertices(0,±,3),foci(0,±,5)
(iv)vertices(±5,0),transverseaxis=8
(v)foci(0,±13),conjugateaxis=24
(vi)foci(±3√5),thelatus−rectum=8
(vii)foci(±,4,0),thelatus−rectum=12
(viii)vertices(0,±6),e=53.
(ix)foci(0,±√10),passingthrough(2,3)
(x)foci(0,±12),latus−rectum=36
(i) Since,vertics(±2,0) and foci (±,0) lies on X-axis,as coefficient of Y-axis is zero.
Hence,equation of hyperbola will be of the form
x2a2−y2b2=1 ...(i) Where it is given that
a=2 and c=3
∵c2=a2+b2
⇒9=4+b2
⇒b2=5
Put the values of a2=4 and b2=5 in Eq,(i),we get
x24−y25=1
(ii) Since,vertics(0,±5) and foci (0,±8) lies on Y-axis,as coefficient of X-axis is zero.
Hence,equation of hyperbola will be of the form
x2a2−y2b2=1 ...(i) Where it is given that (0,±a)=(0,±5)and foci(0,±c)=(0,±8)
a=5 and c=8
∵c2=a2+b2⇒64=25+b2
⇒b2=64−25 ⇒b2=39
Put a2=25 and b2=39 in Eq,(i),we get
y225−x239=1
(iii) Since,vertics(0,±3) and foci (0,±5) lies on Y-axis,as coordinate of X-axis is zero.
Hence,equation of hyperbola will be of the form
x2a2−y2b2=1 ...(i) Where it is given that (0,±3)=(0,±a)and foci(0,±5)=(0,±c)
a=3 and c=5
∵c2=a2+b2
⇒b2=64−25
⇒25=9+b2⇒b2=16
Put a2=9 and b2=16 in Eq,(i),we get
y29−x216=1
(iv)Since,foci (±5,0)lies on X-axis,as coordinate of Y is zero.
Hence,equation of hyperbola wil be of the form
x2a2−y2b2=1 ...(i)
Where it is given that foci(±5,0)=(±c,0)and length of transverse axis is 2a=8
c=5 and 2a=8⇒a=4
∵c2=a2+b2
⇒25=16+b2⇒b2=9
Put a2=16 and b2=9 in Eq.(i),we get
x216−y29=1
(v)Since,foci (0,±13)lies on Y-axis,as coordinate of X is zero.
Hence,equation of hyperbola wil be of the form
y2a2−x2b2=1 ...(i)
Where it is given that foci(0,±13)=(0,±c)and conjugaete length 2b=24
c=13 and b=12
∵c2=a2+b2
⇒169=a2+144⇒a2=169−144
⇒a2=25
Put a2=25 and b2=144 in Eq.(i),we get
y225−x2144=1
(vi)Since,foci (±3√5,0)lies on X-axis,as y-coordinate is zero.
Hence,equation of hyperbola wil be of the form
y2a2−x2b2=1 ...(i)
Where it is given that foci(±3√5,0)=(±c,0)and length oflatusrectum
2b2a=8
∵b2=4a
∵c2=a2+b2
∴(3√5)2=a2+(4a)
⇒9×5=a2+4a
⇒a2+4a−45=0
⇒On spliting the middle term
⇒a2+9a−5a−45=0
⇒a(a+9)−5(a+9)=0
⇒(a−5)(a+9)=0
⇒a−5=0,a+9=0
⇒a=5,−9
∵a can′t be negative.
So,a=5⇒b2=4×5=20
Put a2=25 and b2=20 in Eq.(i),we get
x225−y220=1
(vii)Since foci(±4,0)lies on X-axis,Hence,equation,of hyperbola will be of the form
y2a2−x2b2=1 ...(i)
Where it is given that foci(±4,0)=(±c,0)and length of latusrectum,
\(\frac{2b^2}{a}=12\\)
∴c=4 and b2=6a ...(ii)
∴c2=a2+b2
⇒16=a2+6a
⇒a2+6a−16=0
Splitting the middle term
a2+8a−2a−16=0
⇒a(a(a+8)−2(a+8)=0
⇒(a−2)(a+8)=0
⇒a−2=0,a+8=0⇒a=2,−8
∵a can′t be negative. So,a=2
⇒b2=6a=6×2=12
Put a2=4 and b2=12 in Eq.(i),we get
x24−y212=1
(viii)Let the equation of the hyperbola be
−x2a2+y2b2=1
Then vertices=(0,±b)=(0,±6)
∴b=6 and e=54
∵e=√1+a2b2⇒259=1+a236
⇒25−99=a236⇒16=a24+48
So,the equation of hyperbola is,
−x248+y236=1⇒y236−x248=1
∵Foci=(0,±be)=(0,±53×6)=(0,±10)
Since,foci(0,±√10)lies on Y-axis,as x-coordinate is zero.
Hence,equation of hyperbola will be of the form
y2a2−x2b2=1 ...(i)
Where it is given that foci(0,±√10)=(0,±c)⇒c=√10 Also hyperbola passes through the point (1,3)i.e.,pont~will~satisfy~Eq.(i).
∴(3)2a2−(2)2b2=1
⇒9a2−4b2=1 ...(ii)
∵c=√10
⇒c2=√10
⇒a2+b2=10 (∵c2=a2+b2)
⇒b2=10−a2 ...(iii)
From Ep.(ii),9a2−410−a2=1
⇒90−9a2−4aa2(10−a2)=1
⇒90−13a2=10a2−a4
⇒a4−23a2+90=0
⇒a4−18a2−5a2+90=0
⇒a2(a2−18)−5(a2−18)=0
⇒a2=5 or a2=18
⇒b2=10−5=5 If a2=18
⇒b2=10−18=−8
Which in not possible.
So,a2=b2=5
Put a2=b2=5 in Eq.(i)we get
⇒y25−x25=1⇒y2−x2=5
(x)Since foci are(0,±12),it follows that c=12 Length of the latus rectum=2b2a=36 or b2=18a
Therefore c2=a2+b2,gives
144=a2+18a i.e.,a2+18a−144=0,
So,a=−24,6
Sine a cannot be negative,we take a=6 and sob2=108
Therefore,the equation of the required
hyperbola isy236−x2108=1,
i.e.,3y2−x2=108