In each of the following, two polynomials, find the value of a, if x + a is a factor.
(i) x3+ax2 - 2x + a + 4
(ii) x4−a2x2 + 3x - a
(i) Let f(x) = x3+ax2 - 2x + a + 4
and g(x) = x + a
∴ x + a is a factor of f(x)
Let x + a = 0, then x = - a
∴ f(-a) =(−a)3+a(−a)2−2× (-a) + a + 4
= - a3+a3 + 2a + a + 4
= 3a + 4
∴ Remainder = 0
∴ 3a + 4 = 0 ⇒ 3a = - 4
⇒a=−43
Hence a = −43
(ii) Let f(x) = x4−a2x2 + 3x - a
and g(x) = x + a
Let x + a = 0 ⇒ x = - a
Now f(-a) =(−a)4−a2(−a)2 + 3(-a) - a
= a4−a4 - 3a - a
= - 4a
∴ Remainder = 0
∴ -4a = 0 ⇒ a = 0
Hence a = 0