Given: (x−a) is a factor of x6−ax5+x4−ax3+3x−a+2.
Let, f(x)=x6−ax5+x4−ax3+3x−a+2
∵(x−a) is a factor of x6−ax5+x4−ax3+3x−a+2
∴f(a)=0 [ Using Factor theorem]
⇒(a)6−a×(a)5+(a)4−a×(a)3+3×a−a+2=0
⇒a6−a6+a4−a4+3a−a+2=0
⇒2a+2=0⇒2a=−2
∴a=−1
Hence, the value of a=−1.