⇒ ∠OAB=30o and ∠OCB=57o.
In △AOB,
⇒ AO=OB [ Radius of a circle ]
⇒ ∠OBA=∠BAO=30o [ Angles opposite to equal sides are equal ]
In △AOB,
⇒ ∠AOB+∠OBA+∠BAO=180o.
∴ ∠AOB+30o+30o=180o
∴ ∠AOB=180o−30o−30o
∴ ∠AOB=120o ----- ( 1 )
Now, in △OCB,
⇒ OC=OB [ Radius of a circle ]
⇒ ∠OBC=∠OCB=57o. [ Angles opposite to equal sides are equal ]
In △OCB,
⇒ ∠BOC+∠OCB+∠OBC=180o.
⇒ ∠BOC+57o+57o=180o
⇒ ∠BOC=180o−114o
∴ ∠BOC=66o ------ ( 2 )
⇒ ∠AOB=120o [ From ( 1 ) ]
⇒ ∠AOC+∠COB=120o.
⇒ ∠AOC+66o=120o
⇒ ∠AOC=120o−66o
∴ ∠AOC=54o